Microstructure and Mechanical Properties of Surfactant Templated Nanoporous Silica Thin Films: Effect of Methylsilylation
نویسندگان
چکیده
Microstructural and mechanical properties of organic surfactant templated nanoporous thin silica films have been studied by X-ray diffraction, Fourier transform infrared spectroscopy, and nanoindentation. Compared with many other porous low-k dielectrics, the self-assembled molecularly templated nanoporous silica films demonstrate better mechanical properties. This is ascribed to the presence of a well-ordered pore channel structure in the nanoporous silica thin films. Hardness and elastic modulus are strongly dependent on film preparation and modification methods. Trimethylsilylation by hexamethylsilazane vapor treatment effectively enhances the mechanical strength of the nanoporous silica films. When the sol precursor solution is mixed with trimethylchlorosilane ~TMCS!, the resulting nanoporous films have a weaker mechanical strength. The pore channel structure of the nanoporous silica film becomes less ordered for the TMCS derivatized nanoporous films. In addition, the chemical structure in the silica solid matrix of the TMCS derivatized films is more disordered than those without TMCS modification. The nanoindentation measurement results are discussed in terms of the pore microstructure of the nanoporous silica network and the springback effect due to the presence of trimethylsilyl groups in the nanopores. © 2003 The Electrochemical Society. @DOI: 10.1149/1.1573200# All rights reserved.
منابع مشابه
Hydrophilicity of Silica Nano-Porous Thin Films: Calcination Temperature Effects
In this research work, silica nano-porous thin films were deposited on glass substrates by layer by layer method. The thin films were calcinated at various calcination temperatures (200, 300, 400, and 500 °C). The morphology, surface characteristics, surface roughness and hydrophilic properties of the thin films were investigated by field emission scanning electron microscopy, attenuated total ...
متن کاملAqueous Stability of Mesoporous Silica Films Doped or Grafted with Aluminum Oxide
Surfactant-templated silica thin films are potentially important materials for applications such as chemical sensing. However, a serious limitation for their use in aqueous environments is their poor hydrolytic stability. One convenient method of increasing the resistance of mesoporous silica to water degradation is addition of alumina, either doped into the pore walls during material synthesis...
متن کاملDesign and investigation of TiO2 –SiO2 thin films on AISI 316L stainless steel for tribological properties and corrosion protection
The TiO2–SiO2 thin films were deposited on AISI 316L stainless steel via sol-gel method. Then, the effect of the added amount of SiO2 on the structure, morphology and mechanical properties of the films and corrosion behavior of AISI 316L stainless steel substrate were investigated. So, X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, depth-sensing indenta...
متن کاملInvestigation of the mechanical properties of various yttria stabilized zirconia based thin films prepared by aqueous tape casting
In this study various yttria doped zirconia based thin films were prepared by the aqueous tape casting method. The rheological property of the paste was studies. The phase content and microstructure of the samples was investigated by X-ray diffraction and scanning electron microscope, respectively. The mechanical properties of thin films were studied by Vickers microhardness and nanoindentatio...
متن کاملCharge transport under illumination in mesoporous continuous films
Recent developments in the preparation of surfactant-templated mesostructured sol-gel silica materials have extended the morphology from the originally discovered powders, with particle sizes on the order of microns, to mesoporous continuous thin films. These films could find applications in membrane-based separations, selective catalysis and sensors. Particularly, sodium dodecyl sulfate (SDS)t...
متن کامل